НГУ

Форумы НГУ
Текущее время: Пт ноя 22, 2019 7:26 pm

Часовой пояс: UTC + 7 часов




Начать новую тему Ответить на тему  [ Сообщений: 4 ] 
Автор Сообщение
СообщениеДобавлено: Пн сен 29, 2014 4:51 pm 
Не в сети
Редкий гость

Зарегистрирован: Пн сен 29, 2014 4:37 pm
Сообщения: 2
Изображение

Доброе время суток, форумчане. Есть пробка, удерживаемая пружиной с одной стороны и некое давление жидкости в трубке с другой стороны... Как определить на каком зазоре (сечении) уравновестится система, при условии что сила давления оказалась чуть больше силы упрогости пружины и жидкость сочится через пробку-конус?

Если пока некогда, то хотя бы направьте мысли в нужное русло. На что опираться при определении уравновешивания системы, а то у меня круг замыкается на 2х параметрах-качелях (давление-зазор), где они сойдутся...?

Спасибо.


Вернуться к началу
 Профиль  
 
СообщениеДобавлено: Чт окт 02, 2014 12:45 pm 
Не в сети
Начинающий автор

Зарегистрирован: Пт фев 24, 2006 6:38 pm
Сообщения: 211
Сила давления воды на клапан из-за вытекания несколько меньше, чем тупо посчитанная по давлению:
F = \pi R^2 P - (\rho V^2 /2)*int (\delta/(\theta*x))^2*2\pi*R*dx*\sin(theta) ,
где P - давление воды вдали от клапана, R - радиус трубки, \rho - плотность воды, V - скорость истечения, \delta - зазор (расстояние от кромки до конуса по нормали к образующей), \theta - угол конуса, x - расстояние от отверстия до текущей точки вдоль образующей, интеграл берется от \delta до R/\sin(theta), при малом зазоре практически до бесконечности. Вязкостью пренебрегаем и считаем, что поправка в основном набирается в окрестности отверстия.

Эта сила уравновешивается пружиной:
F = \pi R^2 P_0 + k*\delta/\sin(theta) ,
где P0 - давление, при котором клапан вот-вот откроется.

Скорость можно оценить из \rho V^2 /2 = P_0 - P_A , P_A - атмосферное давление. Выходит вроде линейное уравнение для \delta, зазор пропорционален перепаду (P - P_0). Естественно, скоростная поправка оценена по порядку величины.

При совсем малом зазоре будет сказываться вязкость, это значительно нуднее.


Вернуться к началу
 Профиль  
 
СообщениеДобавлено: Сб окт 04, 2014 12:20 am 
Не в сети
Весьма плодовитый автор

Зарегистрирован: Вс ноя 21, 2004 6:01 pm
Сообщения: 1944
А ещё тут есть кнопка "tex":
петрович писал(а):
Сила давления воды на клапан из-за вытекания несколько меньше, чем тупо посчитанная по давлению:
,
где - давление воды вдали от клапана, - радиус трубки, - плотность воды, - скорость истечения, - зазор (расстояние от кромки до конуса по нормали к образующей), - угол конуса, - расстояние от отверстия до текущей точки вдоль образующей, интеграл берется от до, при малом зазоре практически до бесконечности. Вязкостью пренебрегаем и считаем, что поправка в основном набирается в окрестности отверстия.

Эта сила уравновешивается пружиной:
,
где - давление, при котором клапан вот-вот откроется.

Скорость можно оценить из , - атмосферное давление. Выходит вроде линейное уравнение для , зазор пропорционален перепаду . Естественно, скоростная поправка оценена по порядку величины.

При совсем малом зазоре будет сказываться вязкость, это значительно нуднее.


Вернуться к началу
 Профиль  
 
СообщениеДобавлено: Вт окт 07, 2014 5:04 pm 
Не в сети
Редкий гость

Зарегистрирован: Пн сен 29, 2014 4:37 pm
Сообщения: 2
Спасибо вам, Петрович и Nab.Ch.
Сомнения насчёт угла - это угол при основании конуса или внешний угол (90-)? (просто не всегда как на рис. ~45 градусов)


А еще как вариант оставлю здесь способ, который мне удалось достать из другого источника:
- Со стороны пружины сила ,
- Со стороны жидкости сила ;
где - жесткость пружины (Н/м).
- начальное сжатие пружины.
- площадь кольцевого зазора.
- разница давлений внутри трубы и снаружи трубы.
- площадь сечения трубы.
Приравнивая которые получим и после некоторых геометрических расчётов найдём искомый зазор.

Дополнение: Пробкой всё же будет ШАРИК, а не конус, и кромка трубки снята под углом к оси, если будете в дальнейшем что-либо считать по геометрии контакта/зазора с трубкой.


Вернуться к началу
 Профиль  
 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Часовой пояс: UTC + 7 часов


Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 1


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  
cron
Создано на основе phpBB® Forum Software © phpBB Group
Русская поддержка phpBB